SOME CHARACTERIZATIONS OF n-DIMENSIONAL F-SPACES

BY M. J. CANFELL(1)

Abstract. In this paper we obtain characterizations of an n-dimensional F-space in terms of the rings of continuous real-valued and complex-valued functions defined on the space. Motivation for these results is the work of Gillman and Henriksen on U-spaces (F-spaces of dimension 0) and T-spaces (F-spaces of dimension 0 or 1).

1. **Introduction.** Throughout, X denotes a completely regular (Hausdorff) space, C(X) the ring of continuous real-valued functions on X, and $C^*(X)$ the subring of C(X) consisting of the bounded functions in C(X).

By definition, X is an F-space if C(X) has the property that finitely generated ideals in C(X) are principal [5], [6]. Our main concern here is to define a condition on commutative rings with identity in such a way that X is an n-dimensional F-space if and only if C(X) satisfies this condition. The condition we select, called H_n , corresponds to condition T of [4] when n=1. In Theorem 3, we prove that X is an n-dimensional F-space if and only if C(X) satisfies condition H_n . Characterizations of topological dimension alone in terms of C(X) have been given in [2] and [6, Theorem 16.35].

In Theorems 3 and 4 we give characterizations of F-spaces and n-dimensional F-spaces in terms of the rings of continuous complex-valued functions defined on them. These characterizations are analogous to those in terms of C(X) and are of interest in connection with sup-norm algebras of complex continuous functions [8], and alignable complex Banach lattices [1].

For $f \in C(X)$ we define $Z(f) = \{x \in X : f(x) = 0\}$ (the zero-set of f), $P(f) = \{x \in X : f(x) > 0\}$ and $N(f) = \{x \in X : f(x) < 0\}$. For the elementary properties of zero-sets the reader is referred to [6].

We use the modification of covering dimension involving basic covers given in [6, p. 243]. By a slight modification of Definition 4 of [3], we obtain the following characterization of dimension.

Received by the editors August 13, 1970.

AMS 1969 subject classifications. Primary 5420, 5470; Secondary 1310, 5428.

Key words and phrases. n-dimensional, F-space, Hermite ring, H_n -ring, rings of continuous functions.

⁽¹⁾ Some of the results presented here were included in a thesis written at the University of Edinburgh. I am greatly indebted to my supervisor Professor F. F. Bonsall for his suggestions and encouragement.

LEMMA 1. dim $X \le n$ if and only if given n+1 disjoint pairs C_i , C'_i , $i=1,\ldots,n+1$, of zero-sets of X, there exist functions $k_i \in C(X)$ such that $k_i(C_i) = \{1\}$, $k_i(C'_i) = \{-1\}$, $-1 \le k_i \le 1$, and $\bigcap_{i=1}^{n+1} Z(k_i) = \emptyset$.

Proof. Necessity. If C_i and C'_i are disjoint zero-sets, we can choose $f_i \in C(X)$ such that $f_i(C_i) = \{1\}$, $f_i(C'_i) = \{-1\}$ and $-1 \le f_i \le 1$. Let $I^{n+1} = [-1, 1]^{n+1}$ and let S^n denote the surface of I^{n+1} . Then $f = (f_1, \ldots, f_{n+1})$ is a continuous mapping of X into I^{n+1} . Since dim $X \le n$, we can, by Definition 3 of [3], choose $k = (k_1, \ldots, k_{n+1}) : X \to S^n$ such that k(x) = f(x) whenever $f(x) \in S^n$. Then the functions k_i , $i = 1, \ldots, n+1$, satisfy the required conditions.

Sufficiency. If functions k_i exist as stated, then C_i and C'_i are separated in $X-Z(k_i)$ and $\bigcap_{i=1}^{n+1} Z(k_i) = \emptyset$. By Definition 4 of [3], dim $X \le n$.

We now recall some properties of F-rings and Hermite rings. In the following S will denote a commutative ring with identity. The ideal of S generated by n elements a_1, \ldots, a_n will be denoted by $a_1S + \cdots + a_nS$. A commutative ring S with identity is called an F-ring if every finitely generated ideal of S is principal. Thus S is an S-space if and only if S is an S-ring.

We take the following characterization of Hermite rings [4, Lemma 4].

LEMMA 2. A commutative ring S with identity is a Hermite ring if and only if it satisfies the conditions:

- (i) S is an F-ring.
- (ii) Whenever a_1 , a_2 , $d \in S$ and $a_1S + a_2S = dS$, there exist b_1 , $b_2 \in S$ such that $a_1 = b_1d$, $a_2 = b_2d$ and $b_1S + b_2S = S$.

A completely regular space X such that C(X) is a Hermite ring is called a T-space. Alternative characterizations of T-spaces are given in [5, Theorem 3.2]. We will see later that X is a T-space if and only if X is an F-space and dim $X \le 1$.

2. n-dimensional F-spaces.

DEFINITION. Let n be a nonnegative integer. A commutative ring S with identity is said to be an H_n -ring, or to satisfy the condition H_n , if

- (i) S is an F-ring.
- (ii) Whenever $a_1, \ldots, a_{n+1}, d \in S$ and $a_1S + \cdots + a_{n+1}S = dS$, there exist $b_1, \ldots, b_{n+1} \in S$ such that $a_1 = b_1d, \ldots, a_{n+1} = b_{n+1}d$ and $b_1S + \cdots + b_{n+1}S = S$.

Thus S is an H_1 -ring if and only if it is a Hermite ring, and S is an H_0 -ring if and only if it is an F-ring in which generators of principal ideals are unique (up to associates).

THEOREM 3. For every completely regular space X, the following statements are equivalent:

- (a) X is an F-space and dim $X \le n$.
- (b) C(X) is an H_n -ring.
- (c) $C^*(X)$ is an H_n -ring.
- (d) For all $f_1, \ldots, f_{n+1} \in C(X)$, there exist $k_1, \ldots, k_{n+1} \in C(X)$ such that $f_1 = k_1 | f_1 |, \ldots, f_{n+1} = k_{n+1} | f_{n+1} |$ and $k_1 C(X) + \cdots + k_{n+1} C(X) = C(X)$.

- **Proof.** (a) \Rightarrow (d). Suppose $f_1, \ldots, f_{n+1} \in C(X)$. Since X is an F-space, $P(f_i)$ and $N(f_i)$ are contained in disjoint zero-sets. By Lemma 1, there exist functions k_i such that $k_i(P(f_i)) = \{1\}$, $k_i(N(f_i)) = \{-1\}$, and $\bigcap_{i=1}^{n+1} Z(k_i) = \emptyset$. Hence $f_i = k_i |f_i|$, $i = 1, \ldots, n+1$, and $k_1 C(X) + \cdots + k_{n+1} C(X) = C(X)$.
- (d) \Rightarrow (b). The hypothesis implies that X is an F-space and hence that C(X) is an F-ring. Suppose that $f_1C(X)+\cdots+f_{n+1}C(X)=hC(X)$. There exist $g'_1,\ldots,g'_{n+1}\in C(X)$ and $s_1,\ldots,s_{n+1}\in C(X)$ such that $f_1=g'_1h,\ldots,f_{n+1}=g'_{n+1}h$ and $h=s_1f_1+\cdots+s_{n+1}f_{n+1}=s_1g'_1h+\cdots+s_{n+1}g'_{n+1}h$. Put $q=1-s_1g'_1-\cdots-s_{n+1}g'_{n+1}$.

Then hq=0 and for any elements $t_i \in C(X)$ we have $(g_i'+t_iq)h=f_i$. We will choose the t_i so that the elements $g_i'+t_iq$ generate C(X). Since X is an F-space, there exists $p \in C(X)$ such that pq=|q|. By hypothesis, there exist $m_i \in C(X)$ such that $g_i'=m_i|g_i'|$, $i=1,\ldots,n+1$, and $\bigcap_{i=1}^{n+1}Z(m_i)=\varnothing$. Let $t_i=pm_i$ and let $g_i=g_i'+t_iq$. Then for each $x \in X$, we have $g_i(x)\neq 0$ for some i. To see this, suppose first that $g_i'(x)\neq 0$ for some i. Now $(t_iq)(x)=p(x)m_i(x)q(x)=m_i(x)|q(x)|$ has the same sign (or argument) as $g_i'(x)$ so that $g_i(x)\neq 0$. On the other hand, if $g_i'(x)=0$ for all i, then q(x)=1, p(x)=1, and $g_i(x)=t_i(x)=m_i(x)$. Since $\bigcap_{i=1}^{n+1}Z(m_i)=\varnothing$, then $g_i(x)\neq 0$ for some i. Hence $g_1C(X)+\cdots+g_{n+1}C(X)=C(X)$.

(b) \Rightarrow (a). By hypothesis, C(X) is an F-ring and hence X is an F-space. Suppose that C_i , C_i' , $i=1,\ldots,n+1$, are n+1 disjoint pairs of zero-sets. Choose $f_i \in C(X)$ such that $f_i(C_i) = \{1\}$, $f_i(C_i') = \{-1\}$, for $i=1,\ldots,n+1$, and let $h = |f_1| + \cdots + |f_{n+1}|$. Since X is an F-space, $f_1C(X) + \cdots + f_{n+1}C(X) = hC(X)$. By hypothesis, there exist $g_i \in C(X)$ such that $f_i = g_i h$ and $g_1C(X) + \cdots + g_{n+1}C(X) = C(X)$. Thus $\bigcap_{i=1}^{n+1} Z(g_i) = \emptyset$. Now $P(f_i) \subseteq P(g_i)$, $N(f_i) \subseteq N(g_i)$ for $i=1,\ldots,n+1$. Also $|g_i(x)| \le 1$ for $f_i(x) \ne 0$ and we can arrange that $|g_i(x)| \le 1$ everywhere (take $g_i'(x) = g_i(x)$ if $|g_i(x)| \le 1$ and $g_i'(x) = g_i(x)/|g_i(x)|$ if $|g_i(x)| \ge 1$). Since $P(g_i)$ and $N(g_i)$ are completely separated, we can choose g_i so that $g_i(P(g_i)) = \{1\}$ and $g_i(N(g_i)) = \{0\}$.

Let $m_i \in C(X)$ satisfy $f_i = m_i |f_i|$, $-1 \le m_i \le 1$. Define $k_i = s_i \max\{m_i, g_i\} + (1-s_i) \min\{m_i, g_i\}$. Then $f_i = k_i |f_i|$ and $Z(k_i) \subset Z(g_i)$. Hence $\bigcap_{i=1}^{n+1} Z(k_i) = \emptyset$. Since $k_i(C_i) = \{1\}$ and $k_i(C_i') = \{-1\}$ we have dim $X \le n$ by Lemma 1.

(b) \Leftrightarrow (c). $C^*(X)$ is isomorphic to $C(\beta X)$ where βX is the Stone-Čech compactification of X. Since dim $X = \dim \beta X$ [6, p. 245] and X is an F-space if and only if βX is an F-space, the result follows from (a) \Leftrightarrow (b) above.

EXAMPLE. $\beta R^n - R^n$ is an n-dimensional F-space.

That $\beta R^n - R^n$ is an F-space follows from Theorem 14.27 of [6], and it is shown in [7] that dim $(\beta R^n - R^n) = n$.

As a simple consequence, we have an example of an F-ring which is not a Hermite ring (the first example of this was given in [5]). $\beta R^2 - R^2$ is an F-space which is not a T-space, hence $C(\beta R^2 - R^2)$ is an F-ring which is not a Hermite ring.

3. Continuous complex functions on F-spaces. We turn now to the problem of characterizing F-spaces in terms of the ring $C_c(X)$ of all continuous complex-

valued functions on X. We also consider $C_c^*(X)$, the subring of $C_c(X)$ consisting of the bounded functions in $C_c(X)$.

Since Z(f)=Z(|f|), the family of zero-sets of $C_c(X)$ is the same as the family of zero-sets of C(X).

An ideal I of $C_c(X)$ is said to be *selfadjoint* if and only if $f \in I \Rightarrow \overline{f} \in I$, where \overline{f} is the complex conjugate of f.

THEOREM 4. The following conditions are equivalent:

- (a) X is an F-space.
- (b) $C_c(X)$ is an F-ring.
- (c) $C_c^*(X)$ is an F-ring.
- (d) Each ideal I of $C_C(X)$ is selfadjoint.
- (e) For all $f, g \in C_C(X)$, $fC_C(X) + gC_C(X) = (|f| + |g|)C_C(X)$.
- (f) Given a zero-set Z of X, every function $\theta \in C_c^*(X-Z)$ has a continuous extension $h \in C_c^*(X)$.
 - (g) Given $f \in C_c(X)$, there exist $k_1, k_2 \in C_c(X)$ such that $f = k_1 |f|$ and $|f| = k_2 f$.

Proof. (g) \Rightarrow (d). Let $f \in I$. There exist $k_1, k_2 \in C_C(X)$ such that $\bar{f} = k_1 |\bar{f}| = k_1 |f|$ and $|f| = k_2 f$. Hence $\bar{f} = k_1 k_2 f$ so that $\bar{f} \in I$.

(d) \Rightarrow (a). Let $f \in C(X)$. Then $f-i|f| \in C_c(X)$ and by hypothesis its complex conjugate f+i|f| is in the principal ideal generated by f-i|f|. There exists $h \in C_c(X)$ such that f+i|f| = h(f-i|f|). On multiplying both sides by f-i|f| we have

$$|f^2+|f|^2 = h(f^2-2i|f|f-|f|^2),$$

and on simplifying and equating real parts, we get

$$|f|^2 = f^2 = I(h)f|f|.$$

It follows that f=I(h)|f| so that X is an F-space.

The rest of the proof is a routine modification of the proofs in Theorem 14.25 of [6]. For example, (a) \Rightarrow (f) since the real and imaginary parts of θ can be extended over X.

Although $C_c(X)$ is an F-ring if and only if C(X) is an F-ring, the situation is slightly different for H_n -rings.

THEOREM 5. The following conditions are equivalent:

- (a) $C_c(X)$ is an H_n -ring.
- (b) C(X) is an H_{2n+1} -ring.
- (c) X is an F-space and dim $X \le 2n+1$.
- (d) For all $f_1, \ldots, f_{n+1} \in C_C(X)$, there exist $k_1, \ldots, k_{n+1} \in C_C(X)$ such that $f_1 = k_1 | f_1 |, \ldots, f_{n+1} = k_{n+1} | f_{n+1} |$ and $k_1 C_C(X) + \cdots + k_{n+1} C_C(X) = C_C(X)$.

Proof. (a) \Rightarrow (b). First we observe that if X is an F-space and $f_1, f_2 \in C(X)$, then $f_1C(X)+f_2C(X)=(f_1^2+f_2^2)^{1/2}C(X)$. In fact, since $(f_1^2+f_2^2)^{1/2} \le |f_1|+|f_2|$

 $\leq 2(f_1^2 + f_2^2)^{1/2}$, then it follows from Theorem 14.25(6) of [6], that $|f_1| + |f_2|$ and $(f_1^2 + f_2^2)^{1/2}$ are multiples of each other. Similarly if $f_1, f_2 \in C_C(X)$, then $f_1C_C(X) + f_2C_C(X) = (|f_1|^2 + |f_2|^2)^{1/2}C_C(X)$.

Now suppose that $f_1, \ldots, f_{2n+2}, d \in C(X)$ and $f_1C(X) + \cdots + f_{2n+2}C(X) = dC(X)$. Let $h = (f_1^2 + \cdots + f_{2n+2}^2)^{1/2}$. By hypothesis and Theorem 4, X is an F-space and, by the preceding remarks, dC(X) = hC(X). Let $g_i = f_{2i-1} + if_{2i}$, $i = 1, \ldots, n+1$. Again by the preceding remarks, $g_1C_C(X) + \cdots + g_{n+1}C_C(X) = (|g_1|^2 + \cdots + |g_{n+1}|^2)^{1/2}C_C(X) = hC_C(X)$. Therefore $g_1C_C(X) + \cdots + g_{n+1}C_C(X) = dC_C(X)$. By hypothesis, there exist elements $s_{2i-1} + is_{2i} \in C_C(X)$ which generate $C_C(X)$ and which satisfy $g_i = f_{2i-1} + if_{2i} = (s_{2i-1} + is_{2i})d$. Thus $f_i = s_id$, $i = 1, \ldots, 2n+2$ and $\bigcap_{i=1}^{2n+2} Z(s_i) = \emptyset$, i.e., $s_1C(X) + \cdots + s_{2n+2}C(X) = C(X)$.

- (b) \Rightarrow (c). This has been shown in Theorem 2.
- (c) \Rightarrow (d). Let $f_1, \ldots, f_{n+1} \in C_C(X)$. By Theorem 4, there exist $k'_1, \ldots, k'_{n+1} \in C_C(X)$ such that $f_1 = k'_1 |f_1|, \ldots, f_{n+1} = k'_{n+1} |f_{n+1}|$. If $f_i(x) \neq 0$, then $|k'_i(x)| = 1$, and we may assume that $|k'_i(x)| \leq 1$ for $x \in X$, $i = 1, \ldots, n+1$.

Let D be the closed unit disc in the complex plane and D_1 its surface; that is, $D = \{z \in C : |z| \le 1\}$ and $D_1 = \{z \in C : |z| = 1\}$. Then $k' = (k'_1, \ldots, k'_{n+1})$ is a continuous mapping of X into $D^{n+1} \subset R^{2n+2}$. Since dim $X \le 2n+1$, we may, as in Definition 3 of [3], choose $k = (k_1, \ldots, k_{n+1}) : X \to D_1^{n+1}$ such that k(x) = k'(x) whenever $k'(x) \in D_1^{n+1}$. Thus $f_i = k_i | f_i|$, $i = 1, \ldots, n+1$, and $\bigcap_{i=1}^{n+1} Z(k_i) = \emptyset$.

(d) \Rightarrow (a). The proof is identical with (d) \Rightarrow (b) of Theorem 3.

COROLLARY. X is a T-space if and only if given $f \in C_c(X)$, there exists $k \in C_c(X)$ such that f=k|f| and $Z(k)=\emptyset$.

Proof. This is (d) \Leftrightarrow (b) above with n=0 but we give a simple direct proof. If X is an F-space and $f=f_1+if_2$, $k=k_1+ik_2$, then f=k|f| and $Z(k)=\varnothing$ if and only if $f_1=k_1(f_1^2+f_2^2)^{1/2}$, $f_2=k_2(f_1^2+f_2^2)^{1/2}$ and $Z(k_1)\cap Z(k_2)=\varnothing$. Since $f_1C(X)+f_2C(X)=(f_1^2+f_2^2)^{1/2}C(X)$, then (b) \Rightarrow (d) is immediate, while (d) \Rightarrow (b) follows from Lemma 4 of [4].

As the example $X = \beta R^2 - R^2$ shows, $C_C(X)$ may be a Hermite ring while C(X) is not a Hermite ring.

4. *U*-spaces and *T*-spaces. An element u of C(X) (or $C_C(X)$) is said to be unitary if |u(x)| = 1 for all $x \in X$. If f = v|f| and $Z(v) = \emptyset$, then u = v/|v| is unitary, and since |f| = |v| |f|, we have f = v|f| = u|v| |f| = u|f|.

From Theorem 3 and the corollary to Theorem 5, we have the following characterization.

LEMMA 6. X is a U-space (respectively T-space) if and only if for each $f \in C(X)$ (respectively $C_c(X)$), there exists a unitary element u of C(X), (respectively $C_c(X)$) such that f=u|f|.

Finally we given an unpublished result of Bonsall in which T-spaces are characterized in terms of linear operators on the complex vector space $C_c(X)$.

A rotation on $C_c(X)$ is a linear operator D mapping $C_c(X)$ onto $C_c(X)$ such that |Df| = |f| for all $f \in C_c(X)$. $C_c(X)$ is said to be alignable if and only if given $f_0 \in C_c(X)$ there exists a rotation D on $C_c(X)$ such that $D|f_0| = f_0$.

Alignable spaces were considered in [1].

THEOREM 7. X is a T-space if and only if $C_c(X)$ is alignable.

Proof. If $u \in C_c(X)$ is a unitary element for which $f_0 = u|f_0|$, then clearly the operation of multiplication by u is a rotation on $C_c(X)$ with the required property.

Conversely, suppose that D is a rotation on $C_c(X)$ for which $D|f_o|=f_o$. We show that D1 is unitary and that D is the operation of multiplication by D1. Given $x \in X$, let Ψ_x and Φ_x denote the linear functionals on $C_c(X)$ defined by $\Psi_x(f) = f(x)$ and $\Phi_x(f) = (Df)(x)$. Then $|\Psi_x(f)| = |\Phi_x(f)|$ for each $f \in C_c(X)$. Hence Ψ_x and Φ_x have the same null space and therefore differ only by a scalar factor. Thus $\Phi_x = \lambda_x \Psi_x$ for some $\lambda_x \in C$ with $|\lambda_x| = 1$. Now $(Df)(x) = \Phi_x(f) = \lambda_x \Psi_x(f) = \lambda_x f(x)$. In particular, $(D1)(x) = \lambda_x$ so that (Df)(x) = ((D1)(x))f(x). This holds for all $x \in X$, so that Df = (D1)f. Finally, for each $x \in X$, $|(D1)(x)| = |\lambda_x| = 1$ so that D1 is unitary and $|(D1)|f_o| = D|f_o| = f_o$.

REFERENCES

- 1. F. F. Bonsall and B. J. Tomuik, The semi-algebra generated by a compact linear operator, Proc. Edinburgh Math. Soc. (2) 14 (1964/65), 177-196. MR 32 #1557.
- 2. M. J. Canfell, Uniqueness of generators of principal ideals in rings of continuous functions, Proc. Amer. Math. Soc. 26 (1970), 571-573.
- 3. J. R. Gard and R. D. Johnson, Four-dimension equivalences, Canad. J. Math. 20 (1968), 48-50. MR 36 #5913.
- 4. L. Gillman and M. Henriksen, Some remarks about elementary divisor rings, Trans. Amer. Math. Soc. 82 (1956), 362-365. MR 18, 9.
- 5. —, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. 82 (1956), 366-391. MR 18, 9.
- 6. L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #6994.
- 7. M. Jerison, Rings of germs of continuous functions, Proc. Conf. Functional Analysis (Irvine, Calif., 1966), Academic Press, London; Thompson Book, Washington, D.C., 1967. MR 36 #4342.
- 8. M. L. Weiss, Some separation properties in sup-norm algebras of continuous functions, Proc. Internat. Sympos. Function Algebras (Tulane University, 1965), Scott-Foresman, Chicago, Ill., 1966, pp. 93-97. MR 33 #1756.

University of New England, Armidale, Australia